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Implication for health policy/practice/research/medical education:
Three active compounds found in Pluchea indica that could be developed into orally absorbable drugs, showing promise in 
treating conditions like diabetes by targeting PPARG. The study suggests that these compounds have the potential to become 
targeted medications, as indicated by their favorable binding energies and stability in molecular dynamics, supported further by 
free energy calculations.
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Introduction: Pluchea indica is known to have diverse pharmacological properties, including 
anti-inflammatory, antioxidant, antimicrobial, and anticancer activities. However, there is a 
pressing need to thoroughly investigate the molecular interactions between P.  indica compounds 
and peroxisome proliferator-activated receptor gamma (PPARG). This study aimed to elucidate 
the molecular mechanisms behind P.  indica and PPARG, and its potential implications for 
diabetes mellitus. 
Methods: The computational investigation employed Pharmacological Network pharmacology, 
homology modeling, deep learning docking, and molecular dynamics to explore the active 
compounds and targets within P.  indica against the PPARG.
Results: Three active compounds were identified namely pinoresinol, syringaresinol, and 
plucheoside A, all of which complied with the Lipinski rule of five. The deep learning-based 
pose scores were determined as follows: Pinoresinol 0.55, syringaresinol 0.32, and plucheoside A 
0.44. Additionally, protein-protein interactions were observed with PPARG and associated with 
the PPAR signaling pathway. Molecular dynamics simulation analysis showed the stability of the 
three compounds over a 100 ns period. Free energy calculations using Molecular Mechanics-
Generalized Born and Surface Area (MM-GBSA) yielded ΔG values of -44.39  kcal/mol, -51.83 
kcal/mol, and -40.27 kcal/mol for pinoresinol, syringaresinol, and plucheoside A, respectively.
Conclusion: Pluchea indica might be developed to treat various diseases, particularly those 
involving the PPARG signaling pathway. It suggests the possibility of being developed as a 
focused medication for diabetes.
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A B S T R A C T

Introduction
Pluchea indica (L.) Less. is a plant belonging to the 
Asteraceae family and widely distributed in warm regions 
such as Southeast Asia. It has a history of traditional use 
and exhibits pharmacological activities encompassing 

antidyslipidemic, antihyperglycemic anti-inflammatory, 
antioxidant, antimicrobial, and anticancer properties (1-
3). Additionally, the plant can also be used for antidiabetic 
treatment due to its lipase inhibitor effects. When used 
in specific quantities as an herbal supplement, P. indica 
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contributed to a reduction in obesity (4). The plant 
showed insecticidal and herbicidal activities and has been 
employed in venom treatment due to its toxin-neutralizing 
capability (5).

Peroxisome proliferator-activated receptor gamma 
(PPARG) can increase insulin sensitivity and influence 
the insulin formation pathway (6). It is important for the 
development of adipose tissue (7). Network pharmacology 
was employed in this present study to investigate active 
constituent compounds and their targets against the 
PPARG. According to previous studies, some constituents 
can even synergistically affect the different targets (8,9). 
The advantage of this approach lies in its ability to 
comprehensively view the multi-component interactions 
of plants and the characteristics of herbal treatments 
against numerous proteins (10,11). Integrating network 
pharmacology, absorption, distribution, metabolism, 
excretion (ADME) prediction, homology modeling, 
deep learning docking, and molecular dynamics 
simulation, enhances the comprehensive examination of 
P. indica potential in traditional medicine, particularly 
for understanding the network for PPARG. Leveraging 
deep learning, specifically, convolutional neural networks 
(CNNs), can significantly advance our understanding 
of the interaction between P. indica compounds and 
their protein targets, emphasizing the importance of this 
research (12,13).

This research aims to not only unravel the intricate 
relationships between P. indica compounds and PPARG 
but also to pave the way for a deeper understanding 
of potential drug targets and relationships for diabetes 
medication, thyroid hormone regulation, modulation of 
transmembrane receptor protein tyrosine kinase activity, 
cancer, and regulation of the MAPK signaling pathway. 

Material and Methods
Hardware
A Computer WorkStation equipped with a Ryzen 5 3600 
series processor, 16 GB of RAM, a Nvidia® GTX 1660 
Super graphics processing unit (GPU), and running on 
the Lubuntu 20.04 LTS operating system, was utilized for 
conducting network pharmacology, molecular docking, 
and molecular dynamics simulations.

Network pharmacology analysis
Network pharmacology analysis of P. indica was conducted 
using the PhytoChemical Interactions DB (PCIDB) on the 
website: https://www.genome.jp/db/pcidb/. To identify 
significant disease-related target groups, protein-protein 
interaction (PPI) data from STRING (https://string-db.
org/) were used (14,15). The considered organism was 
Homo sapiens, and interactions with a medium confidence 
score >0.400 were selected.

MetaScape was employed to analyze gene lists, 
pathways, and enrichment analysis (https://metascape.

org/) (16). The previously obtained gene list was analyzed 
with the Homo sapiens species, and enrichment analysis 
with parameters Min Overlap 3, P value cutoff 0.01, as 
well as Min Enrichment 1.5 was selected. The study of the 
input gene list included Gene Ontology (GO) Molecular 
Functions pathways, such as GO Biological Processes 
and the Kyoto Encyclopedia of Genes and Genomes 
(KEGG). Structural complex analysis was conducted for 
cellular components, while PPI data were generated and 
clustered using the CytoCluster tool in Cytoscape (https://
cytoscape.org/).

Absorption, distribution, metabolism, excretion analysis
The active compound was analyzed for physicochemical 
descriptors and to predict ADME, pharmacokinetic 
properties, and BOILED-EGG parameters using SWISS 
ADME (http://www.swissadme.ch) (17,18). Moreover, 
toxicity was assessed using the ADMETlab 2.0 software 
(19).

Homology modeling and deep learning docking
The receptor employed in this simulation was the PPARG 
basis of heterodimerization among nuclear receptors with 
PDB ID: 1FM9 (20). Homology modeling was performed 
using SWISS-MODEL (21). Protein, native ligand 
separation and analysis of their interactions were achieved 
using the Discovery Studio 2020 software (https://
discover.3ds.com/). Furthermore, geometry optimization 
was performed through the Avogadro software (22) with 
the Merck Molecular Force Field (MMFF94), while the 
Python-based cloud platform Google Colab was used 
for molecular docking simulations (23). Redocking 
was conducted to verify the docking protocol, utilizing 
an RMSD value of <2 for validation purposes (24). The 
software employed a Deep Learning algorithm (CNN) 
with Gnina version 1.0.3 (25). The grid box used for 
docking involved an autobox ligand, where the ligand file 
determined the binding site. This was achieved by creating 
a prism around the ligand with additional space added in 
each dimension, and the GPU used in this simulation was 
the Tesla T4 with CUDA version 12.0.

Molecular dynamics simulation
CHARMM-GUI was used for input file preparation 
for protein, native ligand, and active compound (26). 
Ionization was carried out with KCl at a concentration 
of 0.15 and the system size used was the rectangle model. 
Periodic boundary conditions were used with particle-
mesh Ewald (PME) and fast Fourier transform (FFT). 
Moreover, the Amber FF19SB force field and the OPC 
water model were applied to protein and ligand (27). 
Ligand parameterization was performed using GAFF2 
and hydrogen mass repartitioning was used to accelerate 
the simulation to 4 fs (28). Equilibration was conducted 
with with constant number of particles, volume, and 
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temperature (NVT) ensemble, followed by production 
simulation with constant number of particles, pressure, and 
temperature (NPT) ensemble at 310 K. The simulations 
were run using Gromacs 2022.2 software with a total time 
of 100 ns (29,30). Free energy calculation was carried out 
through MM-GBSA with gmx_MMPBSA (31,32).

Results 
Three active compounds were obtained from P. indica, 
namely pinoresinol, syringaresinol, and plucheoside, as 
shown in Figure 1 obtained from https://www.genome.jp/
db/pcidb/.
To comprehend the protein-protein interactions targeted 
by the active compounds from P. indica, PPI analysis was 
performed using string-db for the eight specific proteins. 
A total of 10 edges (associations) were generated from the 
analysis of 8 nodes (target proteins), as shown in Figure 
2, with a PPI enrichment P value of 0.000159. This value 
indicated that the resulting network interacted more than 
a random set of proteins, suggesting these proteins were 
interconnected or partially connected as a group.

To find out the proteins that had interactions with 
PPARG, we performed a protein-protein interaction study 
by entering a web server string, which was then visualized 
using Cytoscape, as shown in Figure 3. Then, the proteins 

were chosen based on the density between centers, as 
shown in Figure 3.

The heatmap of selected GO Parents was used for 
the visualization and analysis of the data related to 
hierarchical information about gene functions and GO. 
GO is capable of depicting the hierarchical functions of 
genes and proteins in three aspects namely Biological 
Process, Molecular Function, and Cellular Component. 
Figure 4, presenting the values of -log10(P), shows that 
the larger the value, the more significant the results.

Enrichment GO was used to identify biological 
pathways associated with genes. This analysis can be 
applied to data from various sources, including RNAi 
experiments, mutations, and genomic data. Figure 5 
shows the interconnectedness between Transmembrane 
receptor protein tyrosine kinase activity, Central carbon 
metabolism in cancer, and the MAPK signaling pathway.

Pinoresinol, syringaresinol, and plucheoside A shared 
similar ADME properties as shown in Table 1. These 
three compounds adhered to the Lipinski rule of five for 
oral bioavailability, had molecular weights <500 g/mol, 
exhibited 5 hydrogen bond donors, 10 hydrogen bond 
acceptors, and a log P <5.

Figure 1. Active compounds of Pluchea indica from database PCIDB.

Figure 2. Protein-protein interaction network of Pluchea indica in which 
PPARG is connected to other proteins.

Figure 3. Protein-protein interaction network analysis. A. Network 
analysis from string B. Network analysis between centrality C. Signaling 
pathway PPARG relationship with thyroid hormone.
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The BOILED-EGG approach is used for predicting 
the bioavailability and pharmacological properties of 
a compound based on physicochemical descriptors 
(Figure 6). The white area indicates that plucheoside 
and syringaresinol have distinct physicochemical 
characteristics compared to pinoresinol. The blue color on 
the BOILED-EGG signifies that these three compounds 

have associations with P-glycoprotein involved in the 
transportation of compounds across cell membranes and 
influence their bioavailability in the body. The homology 
modeling results are promising, as indicated by the 
Q-Mean Z-Scores, which are shown in blue (Figure 7).

The molecular docking simulation was first conducted 
by searching for the protein using the UniProt code 

Figure 4. Heatmap-selected gene ontology (GO), revealing disease interactions, disease-related biological processes, responses, and metabolic pathways 
identified through GO analysis.

Figure 5.  Enrichment gene ontology (GO) network associations, unveiling the connections within a specific group of genes or proteins.

Table 1. Properties of absorption, distribution, metabolism, and excretion (ADME) of investigated compounds

ADME Properties Pinoresinol Syringaresinol Plucheoside A
Molecular weight (g/mol) 358.39 418.44 412.47
Number of rotatable bonds 4 6 3
Number of hydrogen bond acceptors 6 8 8
Number of hydrogen bond donors 2 2 4
Molar refractivity (Å²) 94.9 107.89 103.87
Topological polar surface area 77.38 95.84 125.68
Log P (Consensus) 2.26 2.33 0.63
Solubility Soluble Soluble Soluble
Gastrointestinal absorption High High High
Blood-brain barrier permeant Yes No No
P-glycoprotein substrate Yes Yes Yes
CYP2D6 inhibitor Yes Yes No
CYP3A4 inhibitor Yes No No
Lipinski Yes Yes Yes
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P37231. From the data, one protein data bank with 
native ligands suitable for oriented docking was obtained. 
Root mean square deviation (RMSD) calculation for the 
protein (with PDB ID: 1FM9 in chain D) resulted in a 
value of 1.63. For Protein PDB (ID: 5F19), the obtained 
value was 0.72. RMSD was used to measure the difference 
between the position of the ligand from crystallography 
results and docking simulation. Additionally, it was used 
in comparing the original binding shapes (Figure 8). The 
results of the molecular docking studies showed that the 
target protein had the strongest interaction with its native 
ligand, which had the most negative binding energy 
(-12.62 kcal/mol) and the highest CNN pose score (0.93). 
In contrast, pinoresinol (-4.01 kcal/mol, CNN pose score 

Figure 6. The estimation of bioavailability via brain or intestinal permeation assessments.

Figure 7. Image of protein results from homology modeling and validation.

Table 2. Results of molecular docking showing binding energy and 
convolutional neural network (CNN) pose score

Compound Binding energy (kcal/mol) CNN pose score

Native ligand -12.62 0.93

Pinoresinol -4.01 0.55

Syringaresinol -5.49 0.32

Plucheoside A -4.19 0.44

0.55), syringaresinol (-5.49 kcal/mol, CNN pose score 
0.32), and plucheoside A (-4.19 kcal/mol, CNN pose score 
0.44) showed weaker interactions (Table 2).

The RMSD values of all compounds exhibited 
stability, with movements ranging from 0.1 to 0.25 nm. 
Additionally, molecular dynamics simulations confirmed 
the stability of these compounds, further validating their 
consistent behavior over time within the specified range 
(Figure 9). Meanwhile, Native ligand fell within the range 
of 0.1 to 0.28 nm and plucheoside A experienced atomic 
movements between 0.1 to 0.2 nm. 

Figure 10 presents the results of the root mean square 
fluctuation (RMSF) calculation, which shows variations 
in specific amino acids. For the pinoresinol molecule, the 
highest variation occurred in Ile267, with a fluctuation 
magnitude of up to 0.2916 nm. In the case of syringaresinol, 
protein fluctuations were observed in Tyr477, reaching 
0.5185 nm, while plucheoside A exhibited the largest 
fluctuation in Pro206, measuring 0.3898 nm.

The free energy binding of a native ligand and three 
compounds was subsequently computed using molecular 
dynamics and the molecular mechanics-generalized 
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Born and surface area (MM-GBSA) calculation method 
(Table 3).

Discussion
Three bioactive substances were derived from P. indica, 
specifically pinoresinol, syringaresinol, and plucheoside. 
Pinoresinol has been shown to interact with several target 
proteins in humans, including the enzymes arachidonate 
5-lipoxygenase and prostaglandin G/H synthase 2 
(PTGS2), transcription factors peroxisome proliferator-
activated receptor alpha (PPARA), peroxisome 
proliferator-activated receptor delta (PPARD), and 
PPARG. Pinoresinol also interacts with unclassified 
proteins such as Rac GTPase-activating protein 1 
(RACGAP1) and ATPase family AAA domain-containing 

protein 5 (ATAD5). Syringaresinol is known to interact 
with the transcription factor PPARD and the enzyme 
DNA topoisomerase 1 (TOP1) [12]. The KEGG pathway 
database was also used to understand the relationship 
between diseases and pathways, encompassing genes, 
proteins, and metabolites (Figure 3) (33).

The network involving PPARA, PPARD, and PPARG 
was found to be associated with the known PPAR signaling 
pathway. Additionally, the network comprising PTGS2 
and ALOX5 was related to the established arachidonic acid 
metabolism pathway and ovarian steroidogenesis. TOP1 
was associated with ATAD5, an interaction supported 
by experimental data. However, no association existed 
between TOP1-ATAD5, PPARA-PPARD-PPARG, and the 
ALOX5-PTGS2 network. The lack of connections implies 

Figure 8. Interaction between PPARG with native ligand, pinoresinol, syringaresinol, and plucheoside A (PDB ID:1FM9).

Figure 9. The root mean square deviation (RMSD) plot showing 
conformational changes of native ligand, pinoresinol, syringaresinol, and 
plucheoside A.

Figure 10. The root mean square fluctuation (RMSF) plots showing 
the flexibility of PPARG for each residue with native ligand, pinoresinol, 
syringaresinol, and plucheoside A.

http://www.herbmedpharmacol.com


Journal of Herbmed Pharmacology, Volume 13, Number 4, October 2024            http://www.herbmedpharmacol.com636 

Putra et al

that the specific proteins are not related to PPAR signaling, 
arachidonic acid metabolism, or ovarian steroidogenesis 
pathways. 

The relationship between diseases and proteins can be 
analyzed through text mining, which involves the use 
of the natural language processing method to extract 
information about disease-protein interactions from 
scientific literature. The results obtained included the 
proteins Insulin receptor (INSR), Epidermal growth 
factor receptor (EGFR), Ret proto-oncogene (RET), 
tumor protein p53, and Fibroblast growth factor receptor 
1 (FGFR1), which exhibited relational connections. 
Experimental data and co-expression interactions 
were also found in INSR, EGFR, RET, and FGFR1. Co-
expression refers to the simultaneous expression of two 
or more genes within the same cell or tissue, serving as 
a strong indicator of their functional relationship due 
to involvement in similar biological processes. This 
network is suitable for identifying potential drug targets, 
comprehending the molecular basis of diseases, and 
designing experiments to study gene functions. 

The results illustrated that the polar surface area 
values were below 140 Å². This value is considered a 
recommended threshold for good oral absorption (34). 
Additionally, these three compounds are water-soluble 
and easily absorbed by the body, functioning as substrates 
of the P-gp protein transporter and inhibitors of the 
CYP2D6 enzyme. However, Plucheoside A among these 
compounds cannot penetrate the blood-brain barrier. 
Another aspect evaluated in silico was the potential 
toxicity based on the presence of toxicophore groups in 
the selected compounds. This evaluation was conducted 
using the SWISSADME and ADMETlab 2.0 webservers. 
The toxicophore criteria used were based on the structural 
alert rules defined by Brenk et al (35) as well as FAF-Drugs4 
(36). Based on the results, the compounds Pinoresinol and 
Syringaresinol have a potentially problematic fragment, 
namely the phenol group. According to FAF-Drugs4 
criteria, phenolic groups are classified as being potentially 
toxic due to their ability to generate free radicals that 
can damage DNA material. The biotransformation of 
phenolics yields electrophilic compounds having similar 
effects within the human body system. However, these 
results cannot be definitively drawn as conclusive, 
because numerous phenolic compounds are bioactive and 
beneficial to biological systems.

The BOILED-EGG approach showed two color-coded 
sections namely white and yellow (Figure 6). Pinoresinol 

Table 3. Free binding energy score using MM-GBSA method

Compounds ΔG (kcal/mol)

Native Ligand -70.23 ± 3.48

Pinoresinol -44.39 ± 0.89

Syringaresinol -51.83 ± 13.31

Plucheoside A -40.27 ± 5.48

was positioned on the Egg graph with a yellow color, 
representing the blood-brain barrier. The yellow region 
on the Egg graph indicates that Pinoresinol possesses 
characteristics suggesting potential penetration across the 
blood-brain barrier. PPARG has interactions with SIRT1, 
NCOR2, PPAGCA1, CREBBP, MED1, NCOA1, NCOA2, 
RXRA, NCOR1, and RELA. KEGG analysis shows that 
the gene contributes significantly to the thyroid hormone 
pathway with a score of 1.127x107. This indicates that P. 
indica may have potential in treatments that correlate with 
thyroid disease, as shown in Figure 3c.

Based on these outcomes, the regulatory functions 
involved in disease interaction include positive regulation 
of biological processes, response to stimulus, and 
metabolic processes. These are directly related to the 
PPAR signaling pathway (37). 

Figure 5 illustrates the associations among the 
transmembrane receptor protein tyrosine kinase activities. 
Transmembrane receptor protein tyrosine kinases play 
a crucial role in cellular activities and processes such as 
growth, division, and metabolism. Understanding the 
mechanisms of these receptors could provide new insights 
into anti-cancer therapies (38).

Homology modeling was conducted due to the 
unsatisfactory quality of the validation for PDB ID 1FM9 
in terms of its percentile ranks. The results showed the 
QMEAN Z-Scores, which depicted the resemblance of the 
constructed model to experimental results. The closer the 
value to zero, the better the alignment with experimental 
outcomes. Furthermore, the model was assessed based on 
Cβ, all-atom, solvation, and torsion, all of which indicated 
favorable outcomes, as shown in Figure 7. As the black 
line moved toward the right, the quality improved. 

Redocking was performed to observe the RMSD value. 
RMSD can evaluate the accuracy of docking simulations 
and identify the most favorable binding positions, with 
the reference value being <2 (30). The docking analysis 
revealed varying degrees of interaction between different 
compounds and the target receptor (39). The docking 
results for PDB ID 1FM9 (Chain D) (presented in Table 
2) showed that in the protein complex, the native ligand 
possessed a binding energy of -12.62 kcal/mol, indicating 
a strong interaction with the target protein. Moreover, 
the native ligand also achieved the highest CNN pose 
score of 0.93, signifying a favorable positioning within 
the protein binding site. Pinoresinol had a higher binding 
energy (-4.05 kcal/mol), although it was still lower than 
Syringaresinol (-5.49 kcal/mol) and Plucheoside A (-4.19 
kcal/mol). The CNN pose score for Pinoresinol remained 
relatively high (0.55), indicating a fairly good placement.

The interaction between PPARG and active compounds 
presented in Figure 8 showed that Pinoresinol formed 
hydrogen bonds with the amino acids Ser289, His323, 
and Phe360, while Pi interactions occurred with His449, 
Phe363, Leu469, and Ile281. Syringaresinol exhibited 
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2 hydrogen bonds with Gln283, Glu259, and Cys285. 
Meanwhile, Plucheoside A featured 2 hydrogen bonds 
with Ser342 and Arg288, as well as one alkyl bond with 
Ile341.

Analysis using Discovery Studio showed that the active 
site residues included Cys285, Gly284, Phe282, Ser289, 
Met348, Ile341, Leu330, His449, Tyr473, and Met364. 
Additionally, the active configuration on PPARG involved 
the amino acids Asn450, Leu451, Ser452, Ser454, and 
Leu455 (20). The knowledge of the active site is crucial as 
it relates to chemical reactions and interactions.

The RMSD results from molecular dynamic simulations 
indicated that all active compounds derived from P. indica 
remained stable within the PPARG protein throughout 
the 100 ns simulation, as depicted in Figure 9 compared 
with the native ligand. The RMSF values indicated that for 
the Pinoresinol molecule, the highest variation occurred 
in Ile267 and Tyr477, while for Plucheoside A, the largest 
fluctuation was observed in Pro206. This indicates that 
the amino acids exhibit a high degree of flexibility in their 
movement during the molecular dynamic simulations.

The calculation of ΔG (delta G) using the MM-GBSA 
method is employed to predict the binding free energy 
between two molecules, such as a ligand and a receptor 
in molecular dynamics studies (Table 3). This method 
computes the contribution of energies from different 
interaction forces, including molecular mechanical 
energy (MM), solvation energy (GB), and the energy 
contribution from changes in surface area (SA). The 
three ΔG values provide information about the stability 
and relative interactions of these compounds within 
their environment. Lower values generally indicate that 
the interactions are more stable and thermodynamically 
favorable. Pinoresinol had the lowest value with a low 
uncertainty level, in comparison to the other compounds. 
This computation assessed polar solvation energy, which 
pertained to how molecules interacted with solvents 
and involved optimization calculations to yield accurate 
results (40).

Conclusion
Three active compounds were isolated from P. indica: 
pinoresinol, syringaresinol, and plucheoside A. These 
compounds were analyzed to meet the criteria of orally 
absorbable drugs. Network analysis demonstrated 
the potential of P. indica in treating medications for 
diabetes, regulation of thyroid hormones, adjustment of 
transmembrane receptor protein tyrosine kinase activity, 
intervention in cancer, and control of the MAPK signaling 
pathway. The molecular docking results exhibited a 
binding energy of -5.49 kcal/mol and a deep learning-
based pose score of 0.32 for syringaresinol, indicating its 
strong interaction with the target protein. Additionally, 
this compound formed hydrogen bonds with the active 
site at amino acid Cys285. The molecular dynamics results 

indicated that all active compounds derived from P. indica 
remained stable within the PPARG protein during the 
100 ns simulation. Furthermore, Free energy calculations 
using MM-GBSA for all frames yielded ΔG values from 
-51.83 to -40.27 kcal/mol. It indicates the potential for the 
development drug as a target for PPARG.
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