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Introduction: Memory dysfunction has remained a challenging issue globally. Nootropics 
have proven fruitful in managing cognitive dysfunction but because of their side effects, 
opportunities exist to explore alternatives. White cabbage is a cost-effective natural source 
of phytochemicals without side effects and has remained uninvestigated as a nootropic agent. 
This study sought to identify secondary metabolites in white cabbage extract (WCE) and to 
predict the molecular interaction between the phytochemical constituents of cabbage and 
phosphodiesterase-1B (PDE1B) using in silico studies. 
Methods: The WCE was prepared by macerating crushed fresh white cabbage with ethanol 
for 24 h with continuous stirring. The phytochemical profile of WCE was analyzed using thin 
layer chromatography (TLC)-densitometry, and molecular docking studies were performed 
to predict the underlying mechanism action of the phytochemicals with PDE1B. 
Results: The TLC-densitometry analysis showed that WCE was a rich source of sinigrin, 
whereas quercetin, chlorogenic acid, and rutin were not detected. In silico studies identified 
neobrassicin as having the highest affinity (∆Gbind: −19.3358 kcal/mol) for PDE1B. However, 
quercetin (∆Gbind: −13.1813 kcal/mol) and chlorogenic acid (∆Gbind: −14.8706 kcal/mol) 
exhibited moderate interaction with PDE1B.
Conclusion: These results suggest that WCE has the potency to improve memory function by 
blocking PDE1B, and this preliminary study implies upcoming in vitro and in vivo research.
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A B S T R A C T

Introduction
Memory dysfunction, a neurodegenerative disorder, has 
remained a serious issue globally (1). Thus, the discovery 
of nootropics or memory enhancers, which are also known 
as “smart drugs”, continues to gain attention. Nootropics 
are natural or synthetic substances that typically improve 
memory function in neurodegenerative diseases, such 

as Alzheimer’s disease (AD), and can enhance vigilance, 
learning, attention, and executive functions (2-5). 
Nootropics target different molecules in the cell, thereby 
increasing cognitive function (3). Although cognitive 
improvement has received wide attention, understanding 
the effects of white cabbage extract (WCE) as a smart drug 
is still lacking (6). Many synthetic drugs approved by the 
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American Food and Drug Administration (FDA) for the 
recovery of AD have failed to demonstrate efficacy in 
clinical trials by interacting with amyloid‐β and tau protein 
and only provide short-term comfort from symptoms. 
Hence, they could not effectively treat the disease. 
Therefore, new substitute therapeutic agents need to be 
identified (7). Nootropics that target phosphodiesterases 
(PDEs) in the brain have been shown to help neuronal cell 
function (8,9). PDEs, a large family of enzymes (10), are 
widely distributed in tissues and break the phosphodiester 
linkages of cyclic adenosine monophosphate (cAMP) 
and cyclic guanosine monophosphate (cGMP) (11) to 
produce metabolites such as AMP and GMP, respectively 
(10), which are indicated to have a role in cognitive 
function. The PDE family comprises 11 PDEs (PDE1-11) 
containing >60 isoenzymes with 21 genes and >100 gene 
variants (12,13). Among these PDEs, phosphodiesterase 
1 (PDE1) significantly contributes to controlling memory 
activity, as corroborated by specific PDE1 inhibitors 
(14-16). PDE1 has been identified as a potential target 
for cognitive enhancement (17). The most prevalent 
isoform, PDE1B, is located in various areas of the brain, 
such as hippocampus, temporal cortex, frontal cortex, 
stratum, and parietal cortex, and plays a significant role in 
cognitive function (2,18). Hence, targeting PDE1 presents 
a therapeutic potential for nootropics (13).

Currently, the market is still lacking PDE1 inhibitors, 
and only vinpocetine (PubChem CID 443955), a synthetic 
alkaloid of apovincamine and ethyl ester derivative of 
lesser-periwinkle leaves (19), is currently being used as 
PDE1 inhibitor to treat memory dysfunction. However, 
vinpocetine has several limitations, including non-
selectivity with PDE1 enzyme (20) and side effects, such 
as nausea, flushing, dizziness, headaches, dry mouth, 
heartburn, transient hypo- and hypertension, fetal harm 
or miscarriage, and induction of agranulocytosis (21). 
Though vinpocetine is widely used, this has not yet 
approved by FDA (22). For these reasons, a substitute 
PDE1 inhibitor, particularly from plant species would 
be of value. Organic compounds in “higher plants” have 
demonstrated potential in treating new and existing 
ailments (2). Therefore, PDE1 inhibitors, which can 
influence synaptic function may be preferred as helpful 
and accessible candidates to treat AD (23).

White cabbage (Brassica oleracea L. var. capitata f. alba) 
is one of the most popular vegetables worldwide (24). 
Cabbage has historically been applied as a medicinal herb 
for various conditions, including constipation, mushroom 
poisoning, hangover, sunstroke, fevers, headaches, sore 
feet, children croup, arthritis, hoarseness, melancholy, 
colic (25), and tender breasts (26). White cabbage has 
various reported pharmacological activities, including 
anticancer, antihypertensive, anticholesterolemic, 
antiobesity (27), antipsychotic (28), anticholinesterase 
(29), hepatoprotective (30-32), antidiabetic (33), 

antihyperlipidemic (34), anti-inflammatory (35,36), 
wound healing (37), gastroprotective (38,39), analgesic 
(40), antioxidant (41), antibacterial (42), antifungal (43), 
and anticoagulant effects (44). Cabbage is used in human 
diet mainly because of bioactive compounds. White 
cabbage contains phenolic acids, such as gallic acid (1.69 
± 0.02 mg/g), caffeic acid (8.05 ± 0.01 mg/g), p-coumaric 
acid (7.53 ± 0.04 mg/g) (45), and chlorogenic acid (8.75 
mg/g) (46); flavonoids (47), including catechin (4.93 ± 
0.01 mg/g), cyanidin (1.64 ± 0.01 mg/g), luteolin (0.76 ± 
0.02 mg/g), quercetin (4.98 0.03 mg/g), kaempferol (3.71 ± 
0.01 mg/g) (45), and rutin (0.037 ± 0.021 mg/g DW) (48); 
glucosinolates, namely progoitrin (6.71 ± 0.29 µmol/g 
dry matter (d.m.)), sinigrin (14.15 ± 0.33 µmol/g d.m.), 
gluconapin (0.61 ± 0.02 µmol/g d.m.), glucobrassicin 
(1.04 ± 0.04 µmol/g d.m.), 4-hydroxyglucobrassicin (0.80 
± 0.13 µmol/g d.m.), 4-methoxyglucobrassicin (0.64 ± 
0.10 µmol/g d.m.), neoglucobrassicin (0.32 ± 0.02 µmol/g 
d.m.) (49), glucobrassicanapin, and glucoalyssin (50). It 
also contains β-carotene (2546 ± 191 µg/100 g wet weight 
basis) (51), vitamin C (329.45 ± 8.95 mg/100 g d.w.) (52), 
vitamin E (0.107 mg/100 g fresh weight) (53), neoxanthin, 
and violaxanthin (54). As per this data, chlorogenic acid, 
quercetin, and sinigrin are higher than other components. 
These three bioactive compounds have been claimed to 
play a major role in the inhibition of PDE1B activity (47). 
Therefore, it would be of value to predict the interaction 
of WCE with PDE1B by using in silico studies and to 
investigate its chemical composition.

Currently, no published study has identified the major 
bioactive compounds of WC in an ethanol extract or 
predicted the binding affinity of its metabolites with 
PDE1B by in silico studies. White cabbage is a common 
vegetable that has not been extensively explored as a 
nootropic agent targeting PDE1B. The aim of this study 
was to identify major bioactive compounds in WCE and 
predict the binding interaction of the phytochemical 
constituents of WCE with PDE1B via molecular docking. 
This study provides new insight into the discovery of a new 
agent targeting PDE1B for combating neurodegenerative 
disorders, including AD. Further in vitro and in vivo 
studies are required to strengthen the scientific evidence 
for this.

Materials and Methods
Materials and instruments
Fresh WC (Magelang District, Middle Java, Indonesia), 
aquabidest (Surabaya, Indonesia), deionized water (PT 
Bratachem, Yogyakarta, Indonesia), 0.9% saline (PT Braun 
Pharmaceutical Indonesia), ethanol (Merck, Germany), 
Whatman No. 1 filter paper (GE HealthCare, USA), silica 
gel F254 (Cat. 1055540001; Merck, Germany), quercetin 
(Merck, Germany), chlorogenic acid (Sigma-Aldrich, 
USA), sinigrin (Sigma-Aldrich, USA), rutin (Sigma-
Aldrich, USA), formic acid (Merck, Germany), ethyl 
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acetate (Merck, Germany), n-hexane (Merck, Germany), 
chloroform (Merck, Germany), acetone (Merck, 
Germany), toluene (Merck, Germany), and TLC spray 
reagents consisted of Cerium sulfate, FeCl3 and citroboric 
(Merck, Germany) were used in this study. Among 
equipment, electric blender (Airlux BL-3022 Electric 
Blender), rotary evaporator (Shenzen POCE Technology 
Co., Ltd.), desiccator (NORMAX Glass Ware Desiccator, 
Indonesia), UV lamp (254 and 366 nm), CAMAG® TLC 
Scanner 3 (Muttenz, Switzerland) were used.

Plant material collection and identification
Fresh WC leaves were collected from Magelang district, 
Jawa Tengah, and authenticated at the Department of 
Pharmaceutical Biology, Faculty of Pharmacy, Universitas 
Gadjah Mada, Indonesia. A voucher specimen was 
deposited there (20.25.1 UN1/FFA.2/BF/PT/2022).

Extract preparation
Fresh WC leaves were thoroughly washed, and 1 kg of 
leaves was crushed with an electric blender to improve 
extraction. The crushed WC leaves were macerated with 
5 L of 100% ethanol overnight for minimum of 24 hours 
and then filtered. The WC extract was evaporated using a 
rotary evaporator at 50°C, and the extract was stored in a 
desiccator at room temperature until dry.

Thin layer chromatography-densitometry analysis
Phytochemical analysis was performed using thin layer 
chromatography (TLC)-densitometry. The presence of 
quercetin, chlorogenic acid, sinigrin, and rutin in WCE 
(10 mg/mL) were investigated using TLC-densitometry 
dilutions of quercetin, chlorogenic acid, sinigrin, and 
rutin as reference agents (1 mg/mL). An aluminum plate 
precoated with silica gel F254 was applied as the stationary 
phase. In addition to this, a mixture of n-hexan: ethyl 
acetate: formic acid (6:4:0.5; 19 minutes), formic acid: 
ethyl acetate: aquabidest water (1:8:1.5; 25 minutes), ethyl 
acetate: methanol: water: formic acid (6:2:1:1 drops; 20 
minutes) and ethyl acetate: formic acid: water (7:1.5:1.7; 
29 minutes) was separately employed as the mobile phase. 
The time taken by the mobile phase was recorded by a 
stopwatch. Chromatographic detection of compounds 
was performed under UV light at 254 and 366 nm. The 
maximum wavelengths of 380, 330, 399, and 266 nm were 
assessed with a TLC scanner (CAMAG® TLC Scanner 3). 
Furthermore, the spots on TLC plates of WCE along with 
its standards (quercetin, chlorogenic acid, sinigrin, and 
rutin) were visualized after spraying with citroboric, FeCl3, 
and cerium sulfate (for sinigrin and rutin), respectively.

In silico molecular docking studies
Molecular docking was performed using the Molecular 
Operating Environment (MOE) software (MOE 2022.10) 
to find the binding and to define the interaction of the 

phytochemical constituents of WCE with PDE1B. The 
experimental 3D structures of PDE1B_HUMAN enzyme 
with UniProt ID (Q01064) were searched first using 
UniProt (https://www.uniprot.org/) and later obtained 
from the Protein Data Bank (https://www.rcsb.org/), and 
PDB ID: 5UP0; the crystal structure of human PDE1B 
in complex with 8HP (6-[(4-chlorophenyl)methyl]-
8,9,10,11-tetrahydro[1]benzothieno[3,2-e][1,2,4]
triazolo[1,5-c]pyrimidin-5(6H)-one) was selected for 
docking studies.

Known ligand dataset preparation
Known ligands (inhibitors of PDE1B) were downloaded 
from ChEMBL (open database of molecule with drug-like 
properties maintained by the European Molecular Biology 
Laboratory) based on their IC50 values. The known ligands 
were constructed as a dataset. This dataset was prepared 
using MOE with default settings (energy minimization by 
setting gradient as 0.1 kcal/mol and constraints as rapid 
water molecules) and it was used later in scoring function 
validation.

Test ligands preparation
The 2D structures of 24 phytochemical constituents of 
WCE or test ligands were obtained via their SMILES ID 
in PubChem, and their three-dimensional (3D) structures 
were prepared using MOE by minimizing energy.

Protein-ligand complex preparation
The 3D structure of PDE1B (5UP0) was prepared by 
removing metal atoms and by minimizing energy using 
MOE with the default parameters using QuickPrep tool; 
this complex was saved as mdb file for further docking 
validation.

Docking protocol validation
The docking protocol validation was carried out through 
redocking and scoring function validation. Induced fit 
method was preferred to perform the flexible docking on 
pocket atoms of protein. Triangle Matcher and London dG 
were selected as placement method and ASE was selected 
as scoring function. In redocking, the root mean square 
deviation (RMSD) was computed for evaluating position 
validation, and a good value of RMSD was considered 
within the threshold limit (<2 Å). The scoring function 
validation was analyzed by calculating the relationship 
between docking score and IC50 values of known ligands.

Docking of test ligands with protein
The prepared 3D structures of all 24 test ligands were 
docked with the prepared PDE1B (5UP0) using validated 
docking protocol. The binding affinities showed by docking 
score were calculated for ligand-enzyme complexes as kcal/
mol. The docking results of 24 test ligands were analyzed 
and visualized in both 2D and 3D interactions. 
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Results 
The ethanol extraction yield of WC was 3.017%. TLC-
densitometry analysis was performed to identify the 
presence of major compounds (quercetin, chlorogenic 
acid, sinigrin, and rutin) in WCE. WCE was prepared in 
methanol and analyzed on precoated silica gel TLC plates 
and observed under UV light (254 and 366 nm) as well 
as visible light. We also performed TLC-densitometer 
analysis to obtain complementary evidence regarding the 
presence of these major compounds. The results indicated 
that quercetin had an Rf value of 0.35. At this Rf, no 
quercetin was detected in WCE (Figure 1a, b, c, d, e). To 
verify the presence of quercetin in WCE, the TLC plates 
were analyzed using a TLC-densitometer. The analysis 
was performed under the maximum wavelength at 380 
nm, which confirmed that quercetin in WCE could not 
be detected, although the quercetin standard was detected 
(Figure 2A).

We could not detect chlorogenic acid in WCE, although 
the chlorogenic acid standard was clearly detected at an Rf 
of 0.63 (Figure 1f, g, h, i, j). An intensive spot was present 
on the TLC plate but this had a higher Rf compared 
with that of the chlorogenic acid standard. This spot 
was predicted as caffeic acid, another hydroxycinnamoyl 
ester of quinic acid with high structural similarity to 
chlorogenic acid. Thorough analytical work is required 
to confirm the structure. To confirm the presence of 
chlorogenic acid in WCE, the compound spots on the TLC 
plates were analyzed with a TLC-densitometer under a 
maximum wavelength at 330 nm. Figure 2B demonstrated 

that the chlorogenic acid standard had a sharp spectrum 
at 330 nm, although this spectrum could not be detected 
in the WCE. These results indicated that the WCE does 
not contain quercetin and chlorogenic acid.

In this study, sinigrin, a major glucosinolate present in 
Brassica species, was detected in WCE. The presence of 
sinigrin in WCE was analyzed using TLC, and the spots 
were visualized at 254 and 366 nm after spraying with 
cerium sulfate (Figure 2C). Further analysis using TLC-
densitometer under a maximum wavelength at 399 nm 
confirmed the presence of sinigrin in WCE (Figure 2C). 
The last compound investigated in this study was rutin. 
Rutin is a glycoside form of quercetin, which represents 
a polar glucoside compound. Figure 1p, q, r, s, t showed 
that rutin (Rf 0.32) was not detected in WCE. Further 
investigation using TLC-densitometer under maximum 
wavelength at 266 nm confirmed the absence of rutin in 
WCE (Figure 2D). 

Figure 3A displays a 3D crystal structure of protein 
(PDB: 5UP0) and its pocket together with the docking 
of all known ligands (Figure 3B), which indicates that all 
the known ligands adopt a similar position as that of the 
native ligand. The redocked configuration of target protein 
(PDB: 5UP0) with the native ligand (6-(4-chlorobenzyl)-
8,9,10,11-tetrahydrobenzo[4,5]thieno[3,2-e][1,2,4]
triazolo[1,5 c]pyrimidin-5(6H)-one)/(PubChem CID: 
2243267) with the best position was used as reference for 
all known as well as test ligands (Figure 3C).

The 3D configurations of the native ligand with the 
positions of the native (redocked), known, and test ligands 

Figure 1. Thin layer chromatography (TLC) profile of white cabbage extract (WCE), quercetin, chlorogenic acid, sinigrin, and rutin. TLC plates (a), (f), (k), 
(p)-before spray (254 nm); (b), (g), (l), (q)-before spray (366 nm); (c), (h), (m), (r)-after spray; (d), (i), (n), (s)-after spray (254 nm); (e), (j), (o), (t)-after spray 
(366). E: extract; Q: quercetin; C: chlorogenic acid; S: sinigrin; R: rutin.
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Figure 2. Spectrum of white cabbage extract (WCE), quercetin, chlorogenic acid, sinigrin, and rutin on all tracks. (A) Quercetin, (B) chlorogenic acid, (C) 
sinigrin, and (D) rutin.  E: extract; Q: quercetin; C: chlorogenic acid; S: sinigrin; R: rutin.

Figure 3. 3D view of crystal structure of phosphodiesterase-1B (PDE1B), positions of all known ligands and redocked configuration of native ligand. (A) 
3D structure of PDE1B (5UP0) and its active site with pocket shown, which contains Leu438, Pro396, 8HP603, Leu431, Phe414, Phe418, Met437, Asp392, and Thr437 
(they can be clearly seen in zoom out pocket). (B) 3D configuration of docking of all known ligands, which is important for test ligands. (C) 3D configuration 
of redocked native ligand showing the favorable RMSD (Root mean square deviation) value.

alongside the native ligand are shown in Figures 4–6 
(panels A & D with pocket shown and panels B & E without 
pocket shown), and their interaction with the receptor 
in 2D mode (C & F). The docking study found that the 
pyrimidine and thiophene rings of the native ligand have 
strong bifurcated π-π binding with Phe414; whereas the 

chlorobenzene ring displayed a π-hydrogen interaction 
with Val439. Interestingly, His395 and Gln443 act as sidechain 
donors; His395 interacts with nitrogen in the imidazole ring; 
whereas Gln443 interferes with oxygen of pyrimidine ring 
with a bond length of 0.5294 Å (Figure 4C). In addition, 
the pyrimidine, thiophene, and chlorobenzene rings of the 

http://www.herbmedpharmacol.com


Journal of Herbmed Pharmacology, Volume 12, Number 4, October 2023            http://www.herbmedpharmacol.com526 

Ahmad et al

known ligand (CHEMBL4095097) exhibited a very strong 
π-π interaction with Phe446. GlnA443 and GlnB443 showed 
sidechain interactions with the oxygen of pyrimidine ring 
with a bond length of 1.5128 Å (Figure 4F).

The 2D and 3D structures of vinpocetine and chlorogenic 
acid and their atomic interconnection with specific amino 
acid residues at active site of PDE1B are shown in Figure 
5. The benzene ring of vinpocetine had a π-hydrogen 
interaction with Phe414 while the pyrrole ring had a π-π 
interaction with Phe446. In addition, the nitrogen ring in 
piperidine acted as a donor with the sidechain of Gln443 
with a bond length of 1.2075 Å (Figure 5C). The benzene-
1,2-diol ring in chlorogenic acid formed a π-π bond with 
Phe446, and two hydroxyl groups interacted with the Gln443 
sidechain. However, the hydroxyl groups on cyclohexane 
bound to the sidechains of Asp392 and Met347.

While Thr345 acted as backbone donor on cyclohexane, 
His278 acted as sidechain donor on oxygen ion of the 
carboxylic group, which is present on cyclohexane with a 
bond length of 1.6566 Å (Figure 5F).

The 2D and 3D structures of quercetin and 
neoglucobrassicin and the atoms of specific amino acids 
in the active site of protein are shown in Figure 6. The 
benzene-1,2-diol ring in quercetin interacted with Phe446, 
and the His395 sidechain interacted with the oxygen present 
on 4H-pyran ring while a hydroxyl group interacted with 
Asp392 and Met347 via water molecules. Furthermore, 
two hydroxyl groups present on the benzene-1,2-diol 
ring interacted with the sidechains of His234 and Glu304, 
respectively, with a bond length of 1.2627 Å (Figure 6C). 

The indole ring in neoglucobrassicin made a bifurcated 

π-π bond with Phe446, and sulfur trioxide interacted with 
His234 and Tyr233 via water molecules while Tyr233 donated 
an atom to the oxygen present in sulfur trioxide. However, 
Asn283 acted as a backbone acceptor with a bond length of 
2.4520 Å (Figure 6F). The names and structures of all 24 
test compounds along with vinpocetine (as standard) and 
their free bind energies (∆Gbind [kcal/mol]), as well as their 
pIC50 values are detailed in Table 1.

Discussion
WC is a rich source of flavonoids, phenolic acids, and 
glucosinolates, and these phytochemicals participate in 
controlling various diseases, including neurodegenerative 
ones. Previous reports have shown that Brassica species 
and their bioactive compounds reduce the risk of 
neurodegenerative development in multiple animal 
and clinical studies (55-57). In this study, only ethanol 
was considered as an extraction vehicle for WCE. 
Ethanol is considered relatively safe compared to other 
organic solvent and it is the most common solvent 
used pharmaceutical industry (58-60). Additionally, it 
effectively extracted most of flavonoids, phenolic acids, 
and glucosinolates compounds (2,61).

Previous studies have identified the phytochemical 
constituents of white cabbage. It was shown that 
chlorogenic acid, quercetin, and sinigrin are the major 
compounds in the white cabbage. We hypnotized that 
these three bioactive compounds might play a major 
role in the inhibition of PDE1B activity. In this study, 
we provided a prediction of the molecular interaction 
between the phytochemical constituents of white cabbage 

Figure 4. 3D configuration of native and known ligands with native ligand, and 2D interaction of amino acids of both native and known ligands. (A) 
Redocked native ligand 3D interaction with amino acids; (B) superposed binding orientation of native ligand with native ligand, (C) 2D interaction of native 
ligand with amino acids; (D) 3D interaction of docked known ligand (ChEMBL4095097) with amino acids; (E) known ligand superposed with native ligand 
(ChEMBL4095097); and (F) known ligand (ChEMBL4095097) 2D interaction with amino acids. Phe: Phenylalanine; Gln: Glutamine; Pro: Proline; Thr: 
Threonine; Ser: Serine; Ile: Isoleucine; Val: Valine; Leu: Leucine; His: Histidine.
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(obtained from literatures) and PDE1B using the in silico 
study. To confirm the presence of the major phytochemical 
constituent in the WCE, the TLC-densitometry analysis 
was performed. We found that sinigrin was the major 
compound in the WCE extract. The presence of quercetin, 
chlorogenic acid, and rutin could not be confirmed. 
This finding differs from those of previous studies. 

Different extracts of Brassica species (white cabbage, 
Chinese cabbage, cauliflower, broccoli, and red cabbage) 
have been analyzed using reverse phase-high pressure 
chromatography (RP-HPLC) to detect phenolic and 
flavonoid compounds in previous studies. Quercetin and 
chlorogenic acid, which represent flavonoid and phenolic 
compounds, respectively, were identified as the major 

Figure 5. 3D configuration of vinpocetine and chlorogenic acid with native ligand, and 2D interaction of both vinpocetine and test ligands with amino acids. 
(A) Docked vinpocetine 3D interaction with amino acid; (B) superposed binding orientation of vinpocetine with native ligand; (C) vinpocetine 2D interaction 
with amino acids; (D) docked chlorogenic acid 3D interaction with amino acids; (E) chlorogenic acid superposed with native ligand; and (F) chlorogenic acid 
2D interaction with amino acids. Phe: Phenylalanine; Gln: Glutamine; Pro: Proline; Thr: Threonine; Ser: Serine; Ile: Isoleucine; Val: Valine; Leu: Leucine; 
His: Histidine; Tyr: Tyrosine; Met: Methionine.

Figure 6. 3D configuration of quercetin and neoglucobrassicin with native ligand, and 2D interaction of both test ligands with amino acids. (A) Docked 
quercetin 3D interaction with amino acids; (B) superposed binding orientation of quercetin with native ligand; (C) quercetin 2D interaction with amino 
acids; (D) docked neoglucobrassicin 3D interaction with amino acids; (E) neoglucobrassicin superposed with native ligand; and (F) neoglucobrassicin 2D 
interaction with amino acids; Phe: Phenylalanine; Gln: Glutamine; Pro: Proline; Thr: Threonine; Ser: Serine; Ile: Isoleucine; Val: Valine; Leu: Leucine; His: 
Histidine; Tyr: Tyrosine; Met: Methionine. 
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Table 1. Structures of all 24 test compounds along with vinpocetine and their free bind energies (∆Gbind [kcal/mol]), as well as their pIC50 values

Test compounds ∆Gbind (kcal/mol) pIC50

HO

O

C

OH

OH
Neoxanthin

−31.2207 13.9603

I2-carotene

−28.8121 12.3107

O

OH O

OH

O
O

OH

OH

OH OH OH

OH
O

O

HO
OH

Rutin

−25.8001 10.2478

HO
O S

NH

N

O
S

OH

O

O

OH

OH

HO

Glucobrassicin

−24.6112 9.4335

O

HO

Tocopherol (Vitamin E)

−23.7416 8.8380

HO
O S N

O
S

OH

O

O

OH

OH

HO
Glucoalyssin

S

O

−20.2074 6.4174
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Test compounds ∆Gbind (kcal/mol) pIC50

N
N

O

O

Vinpocetine

−20.0572 6.3145

HO

O

O

OH

Violaxanthin

−19.9154 6.2174

HO
O S N

O
S

OH

O

O

OH

OH

HO
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−19.6985 6.0689
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O S

N

N

O
S

OH

O

O

OH

OH

HO

Neoglucobrassicin
O

−19.3358 5.8205

S
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O
S

O

O

OH

OH O
OH

OH

OH

HO

Progoitrin

−18.5230 5.2638

O

S O
OH

OH

OH

HO

N
O

S
OH

O

O

HN

4-methoxyglucobrassicin

−18.3059 5.1151

Table 1. Continued
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Test compounds ∆Gbind (kcal/mol) pIC50

O S
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OH

OH
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4-hydroxyglucobrassicin

OH

HO
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HO
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OH

OH

OH
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S
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−14.3643 2.4155

O+HO

OH
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OH
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−13.3437 1.7165

OHO

OH

OH

OH

OH

O

Quercetin

−13.1813 1.6053

Table 1. Continued
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Test compounds ∆Gbind (kcal/mol) pIC50

HO

OH O

O

OH

OH

Luteolin
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O

OH
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OH

HO
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S NO

O
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O OH
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OH
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OHO

Caffeic acid

−8.0784 −1.889
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Ascorbic Acid
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O

OH

OH
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HO
Gallic acid

−6.2417 −3.1475

Table 1. Continued
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compounds (62,63). This result was consistent with that 
reported by Orfali et al (64). 

WC was shown to contain sinigrin (2-propenyl 
glucosinolate) (65), which is a precursor of allyl 
isothiocyanate. This compound has diverse biological 
activities (66), including anticancer, anti-inflammatory, 
antibacterial, antifungal, antioxidant, and wound 
healing effects (67). In line with this study, the presence 
of sinigrin in WCE was previously reported by Dighe 
and Charegaonkar (68) and Amir et al (69). TLC-
densitometry analysis demonstrated that sinigrin was 
the main compound detected in WCE. Previous studies 
have indicated that an aqueous extract of WC contains 
flavonoids (quercetin) and phenolic acids (chlorogenic 
acid) (45). However, in this study, quercetin and 
chlorogenic acid were not found in ethanol extract of WC. 
Chlorogenic acid, a hydroxycinnamoyl ester of quinic 
acids, was previously reported as one of the most abundant 
natural polyphenols in WC (70). TLC is a selective, 
easy to perform, and inexpensive method as compared 
with other sensitive chromatographic techniques for 
identification of compounds (71); however, TLC analysis 
was not sufficient to quantify the minute quantities of 
compounds that may be present in WCE. Therefore, we 
recommend that compounds present in minimal amounts 
be assessed using more sensitive techniques for compound 
quantitation, such as RP-HPLC, gas chromatography-
mass spectrometry, and liquid chromatography-high 
resolution mass spectrometry. 

Before conducting the docking study, the protein targets 
were validated (redocked) and RMSD values were used as 
a parameter. RMSD is a distinguishing feature that exhibits 
the duplicability of protein and native ligand complex in 
the development of a fitting configuration; an ideal RMSD 
value is <1 Å, but <2 Å is also acceptable (72). Molecular 
docking was then performed to obtain insight into the 
possible interaction and binding affinity of PDE1B with 
the phytochemical constituents of WC. The catalytic 
domain and the binding mode pf PDB1 were derived from 
the crystal structure of 5UP0, where the binding pocket 
was comprised of Leu438, Pro396, 8HP603, Leu431, Phe414, 
Phe418, Met437, Asp392, and Thr437 amino acids (Figure 3) 
(73). These in silico studies of PDE1B are consistent with 
those in previous investigations (55,72,73). In this study, 
by using TLC we identified sinigrin as one of the major 
compounds in WCE. However, the presence of quercetin, 
chlorogenic acid, and rutin could not be detected. The in 
silico studies showed that sinigrin did not interacted with 
PDE1B, whereas quercetin and chlorogenic acid exhibited 
moderate binding with PDE1B. The strongest binding 
interaction was shown by neoglucobrassicin PDE1B. 
Further in vitro and in vivo bioactivity guided isolation 
is required to decipher the most active compound as 
nootropic and cognitive function enhancing agent.

Helmi et al reported that Caesalpinia sappan L. ethanol 

extract had more PDE1 inhibitory activity than that of 
other fractions. They also reported that the free-bond 
energy (ΔGbind) of the tested compounds did not differ 
among them, with the lowest free-bond energy shown by 
vinpocetine (2). ΔGbind is the critical factor responsible for 
the receptor-ligand binding strength between the targeted 
PDE1B and the WC test compounds. A low ΔGbind score 
indicates the stability and strength of the interaction 
between an enzyme (e.g., PDE1B) and its ligands. These 
factors contribute to the pharmacological effects. WCE 
can potentially target PDE1 (molecular docking has shown 
its constituent compounds can interact with PDE1B). 
Therefore, WC could be a useful source of a natural 
cognitive enhancer to combat memory dysfunction (72) 
and should be investigated further with in vitro and in vivo 
studies.

Conclusion
This study showed that WCE was a rich source of sinigrin 
as demonstrated via TLC-densitometry. In contrast, we 
did not detect quercetin, chlorogenic acid, or rutin in 
WCE. However, the in silico studies showed that among 
the 24 compounds evaluated, sinigrin did not show any 
interaction with PDE1B, whereas neoglucobrassicin 
exhibited the strongest binding interaction with PDE1B. 
In addition, quercetin and chlorogenic acid exhibited 
moderate binding with PDE1B. Thus, additional 
investigations should be performed on WCE as a 
nootropic and cognitive function enhancing agent. TLC 
analysis could not quantify minute concentrations of 
bioactive compounds present in WCE, and consequently, 
we suggest that highly sensitive approaches, such as HPLC 
or LC-HRMS should be considered for this purpose.
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