Molecular docking studies of Triphala with catalytic portion of HMG-CoA reductase enzyme

Prasob-Orn Rinthong®, Pawitra Pulbutr®, Chawannuch Mudjupa*

Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Maha Sarakham, Thailand 44150

ARTICLE INFO

Article Type: Original Article

Article History:
Received: 2 December 2022
Accepted: 24 January 2023

Keywords:
In silico molecular docking analysis
Triphala-derived phytochemicals
Dyslipidemia
HMG-CoA reductase inhibitor
Beta-sitosterol

ABSTRACT

Introduction: Triphala, consisting of three fruits, *Phyllanthus emblica* L. (Phyllanthaceae), *Terminalia bellirica* (Gaertn.) Roxb. (Combretaceae), and *T. chebula* Retz, is a well-recognized Ayurvedic herbal formulation, used for various therapeutic purposes, including the treatment of dyslipidemia. Inhibitory activity against 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme in the endogenous cholesterol synthesis pathway, is an essential target for the management of hypercholesterolemia. This in silico study aimed to investigate the HMG-CoA reductase inhibitory activity of the phytochemical compounds derived from Triphala formulation by employing molecular docking analysis.

Methods: Ten phytochemical constituents of Triphala formulation were selectively used for docking study by using the HMG-CoA reductase template (PDB: 1HWK). Docking analysis was performed using AutoDock 4.2. The candidates were ranked by the binding energy parameters.

Results: From the docking studies, the phytochemical compounds with HMG-CoA reductase inhibition could be classified into 4 groups, including phytosterols, polyphenols, tannins, and flavonoids. Beta-sitosterol exhibited the highest binding affinity to HMG-CoA reductase with a binding energy of -7.75 kcal/mol.

Conclusion: These 10 phytochemical compounds in Triphala potentially exert their cholesterol-lowering effects via inhibition against HMG-CoA reductase. Nonetheless, further in vitro and in vivo experiments should be conducted subsequently to confirm this finding.

Implication for health policy/practice/research/medical education:
The phytoconstituents of Triphala, specifically beta-sitosterol, processed the substantial binding affinity with HMG-CoA reductase, a rate-limiting enzyme for the endogenous cholesterol synthesis. These results indicate that the phytoconstituents in Triphala may exert their antidyslipidemic effects via HMG-CoA reductase inhibition. Therefore, these Triphala-derived phytochemical compounds are valuable candidates for the development of alternative treatments against dyslipidemia.

Introduction

Dyslipidemia is a crucial risk factor for atherosclerotic cardiovascular diseases (ASCVDs) and represents the major cause of morbidity and mortality in cardiovascular diseases globally. An elevation of plasma lipids, especially low-density lipoprotein (LDL) and triglyceride (TG), as well as a decrease of plasma high-density lipoprotein (HDL) essentially contribute to the pathogenesis of atherosclerosis (1). When atherosclerosis arises, the arteries become hardened, inflexible, and narrow, and can eventually be blocked if the atherosclerotic plaque ruptures. These pathogenic conditions play a pivotal role in ASCVD progression (2). Therefore, the regulation of plasma lipid levels is a crucial measure for the prevention and treatment of ASCVD. Lifestyle modifications and pharmacological treatment are both essential strategies currently used for the management of dyslipidemia. In recent decades, antidyslipidemic drugs with various mechanisms of action have been developed. The inhibition against HMG-CoA reductase is one of the effective approaches to reduce plasma LDL levels via a blockade of endogenous cholesterol synthesis in the liver (3). HMG-CoA reductase inhibitors or statins, such as simvastatin, atorvastatin, rosuvastatin, and pitavastatin, have been extensively prescribed as the first-line antidyslipidemic drugs and for the prevention of ASCVD (4). However,
considerable shortcomings can frequently ensue during the use of statins, including compelling adverse drug reactions and drug interactions. Various cytochrome P450 (CYP) inhibitors, especially CYP3A4 and 2C9 inhibitors, can substantially increase the plasma levels of certain statins and subsequently cause significant adverse drug reactions. The investigation for an effective HMG-CoA reductase inhibitor with a lower risk of these undesired effects is thus still required. Natural products are considered reservoirs for screening therapeutic agents. Various plant-derived extracts or phytochemicals have been documented as high-potential candidates for antidysslipidemic drug development. Triphala, a well-recognized Ayurvedic formulation, consists of three fruits, Phyllanthus emblica L. (Phyllanthaceae), Terminalia bellirica (Gaertn.) Roxb. (Combretaceae) and T. chebula Retz. (5). The major phytoconstituents of Triphala are gallic acid, ellagic acid, chebulagic acid, chebulinic acid, and corilagin (6). In the experimentally-induced hypercholesterolemia rat model, Triphala supplementation at the doses of 1 g/kg/d for 48 days exhibited significantly lower plasma levels of total cholesterol, TG, free fatty acid, LDL, and VLDL (7). The HMG-CoA reductase inhibition has been proposed as one of the antidysslipidemic mechanisms of action of Triphala (8). The HMG-CoA reductase arranges as a tetramer structure and has four active sites formed by residues of two monomers (9). The active site of HMG-CoA reductase is characterized by the presence of cis-loop that fold over part of the HMG-binding pocket (9). Nowadays the interaction between HMG-CoA reductase and statin drugs have been clearly established. However, the binding of promising phytochemicals to the active site of HMG-CoA reductase is still less well examined. In this in silico study, the chemical structures of phytoconstituents derived from Triphala formulation were investigated in orientation and binding with HMG-CoA reductase protein by using AutoDock 4.2 program (The Scripps Research Institute, USA) (10). The HMG-CoA reductase inhibitory activities of 10 phytochemical compounds found in Triphala were subsequently ranked according to their binding energy parameters.

Materials and Methods
The tertiary structure of HMG-CoA reductase was obtained from RCSB (Protein Data Bank). For the HMG-CoA reductase protein, the complex between the catalytic portion of human HMG-CoA reductase and atorvastatin (PDB entry code: 1HWK) was used (9). The ligand (atorvastatin) and water were removed by EditPlus Text Editor. The 2D and 3D structures of all ligands (10 phytoconstituents) were sketched and cleaned up by ChemBioDraw Ultra. The prepared 10 ligands were docked to HMG-CoA reductase template. The docking experiments were performed with AutoDock 4.2 (The Scripps Research Institute, USA) (10). The figures were generated using PyMOL software.

Preparation and validation of HMG-CoA reductase template
The X-ray crystallographic structure of human HMG-CoA reductase (PDB entry code: 1HWK) (9) bound to the inhibitor atorvastatin, downloaded from RCSB (Protein Data Bank), was selected for the preparation of HMG-CoA template. The bound crystal was solved by X-ray crystallography techniques with the resolution of 2.22 Å. To prepare the protein template, ligand and water were firstly removed from the protein structure by EditPlus Text Editor Version 3.51. Hydrogens and Gasteiger charges were added to the protein template 1HWK, by using AutoDockTools 1.5.4 (ADT). During the final preparations, nonpolar hydrogens were merged. The 3-dimension (3D) grid was generated by the AutoGrid algorithm to evaluate the binding energies between inhibitor and enzyme. Grid maps for each atom type in the ligands (A, C, HD, N, OA, SA, F, S, Cl) were set and calculated with AutoGrid 4. The affinity and electrostatic potential grid were calculated for each type of atom in the inhibitor. The energies of a particular inhibitor configuration were also calculated. Grid map parameters were set as follows: numbers of points in x-, y- and z-directions were 38 × 24 × 38 with 0.375 Å spacing; center of grid box in x-, y- and z-dimension were 19.34 × 7.605 × 15.428, and these grid map parameters were served for HMG-CoA reductase template validation and docking experiment. The constructed 1HWK template was validated by docking with its crystal ligand, atorvastatin, and other HMG-CoA reductase inhibitors, which bound crystal structures were available.

The chosen crystallographic structures of HMG-R, PDB entry codes: 1HWL (9) was superimposed with that of PDB entry code: 1HWK by using Swiss-PDBViewer in order to set the coordinates of the structure. The Iterative Magic Fit function in Swiss-PDBViewer was used to fit and align the molecule in order to examine which amino acid was or was not aligned with each other. Additionally, the misalignment of the amino acids could also be visualized clearly. The constructed HMG-R template derived from PDB: 1HWK was set as the reference molecule, then HMG-R from 1HWL was selected for superimposition by using the Iterative Magic Fit function, and only alpha carbons were checked. Finally, the new alignment of the 1HWL template was created and the comparative with coordination of 1HWK template and RMSD was reported after imposition in the angstrom unit. Subsequently, the crystal ligand of atorvastatin and the extracted crystal ligands of rosuvastatin (9) from the corresponding PDB entry codes: 1HWK and 1HWL respectively were docked into the active binding pocket of the prepared template (1HWK). The conformations of these ligands obtained from docking or docked poses were compared with the
corresponding crystallographic poses.

Ligand preparation
The 2D structures of all ligands were sketched and cleaned up by ChemBioDraw Ultra, then converted to the corresponding 3D structures by ChemBio3D Ultra. Each 3D structure was cleaned up and the energy was minimized by MM2 in ChemBio3D Ultra before being saved as a mole2 file. The hydrogen atoms were added to each mole2 file of ligand, then the non-polar hydrogen atoms were merged before assigning charges by the Gasteiger-Hückel method in ADT-1.5.6 and saved as pdb file. Next, the aromatic carbons were identified, then rigid root and rotatable bonds were defined in ADT-1.5.6 before saving as a pdbqt file of each ligand.

Docking procedures
The prepared 10 ligands were docked to the HMG-CoA reductase template. The docking experiments were performed with AutoDock 4.2 (The Scripps Research Institute, USA) (10). The prepared ligands were docked to the template by using a Lamarckian genetic algorithm (LGA) for the ligand conformational search. Other docking parameters were set as follows: number of genetic algorithm (GA) runs “100”, population size “150”, the maximum number of evaluations “15000000”, and the maximum number of generations “27000”. The final docked conformations were clustered using a tolerance of 2Å root-mean-square deviations (RMSD). Each cluster consisted of conformers, which had similar 3D structures (RMSD <2 Å). The orientation with the lowest docking energy in the cluster of the highest number of members was considered the most stable conformation.

Candidates/phytoconstituents of Triphala
Ten phytoconstituents, which have been documented as the major phytochemicals derived from Triphala were purposely selected to be examined in the HMG-CoA reductase docking study. The list of these phytoconstituents and their natural plant sources are shown in Table 1.

Results
Molecular docking is a tool for studying the binding interaction between macromolecules or target proteins and small molecules. AutoDock 4.2 was used as a tool for investigating the orientation and binding energies in the 10 major phytochemical compounds of Triphala with the active binding site of HMG-CoA reductase. Initially, the HMG-CoA reductase template (PDB code: 1HWK) was validated by docking with its crystal ligand and rosuvastatin (PDB code: 1HWL). Subsequently, 10 phytoconstituents of Triphala were docked into the active binding site of the validated HMG-CoA reductase template. The active compounds were subsequently ranked by the binding energy (ΔG) obtained from the docking analysis for selection. Other essential parameters were also included in the selection i.e., ligand efficacy (LE), number of hydrogen bonds, % conformation, and amino acid residues.

Preparation and validation of HMG-CoA reductase template
The crystal structure of the HMG-CoA reductase template (PDB code: 1HWK) bound with the inhibitor 117 (atorvastatin), solved by the X-ray diffraction technique with the resolution of 2.22 Å. The HMG-CoA reductase template was selected as the prepared template and validated by re-docking the removed crystal ligand, atorvastatin, back into the binding pocket of the prepared template. The validation result of re-docking 117 (atorvastatin) gave the RMSD between docked pose and crystal pose of 0.52 Å. For cross-validation with FBI (rosuvastatin), the RMSD between the docked pose and its corresponding crystal pose was found to be 0.84 Å with a binding energy of -8.15 Kcal/mol. From the validation results, the HMG-CoA reductase-prepared template was a good model and suitable for the docking experiment as shown in Figure 1.

Table 1. Ten major phytoconstituents of Triphala

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Herbal sources</th>
<th>Phytochemical classifications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T. chebula</td>
<td>T. bellirica</td>
<td>P. emblica</td>
</tr>
<tr>
<td>Beta-sitosterol</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chebulanin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Gallic acid</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Corilagin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Luteolin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Chebulic acid</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chebulinic acid</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Chebulagic acid</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Ten major phytoconstituents of Triphala

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Herbal sources</th>
<th>Phytochemical classifications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T. chebula</td>
<td>T. bellirica</td>
<td>P. emblica</td>
</tr>
<tr>
<td>Beta-sitosterol</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chebulanin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Gallic acid</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>v</td>
<td>v</td>
<td>v</td>
</tr>
<tr>
<td>Corilagin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Luteolin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Quercetin</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Chebulic acid</td>
<td>v</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chebulinic acid</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>Chebulagic acid</td>
<td>v</td>
<td>v</td>
<td></td>
</tr>
</tbody>
</table>

References:
(12-14) Sterols
(15-17) Tannins
(11,12,14,18) Polyphenols
(11-14,18) Polyanphenols
(11,14,18-20) Tannins
(13,14,21) Flavonoids
(11,13,14,16,18,21) Polyanphenols
(11,13,16,21) Tannins
(11,12,15,16,18,21) Tannins
(11,14,16,18,20)
Docking study of the phytoconstituents of Triphala

The chemical structures of 10 phytoconstituents of Triphala were docked into the prepared HMG-CoA reductase template. The binding affinity was characterized by binding energy value. The active compounds ranked by the binding energy were listed in Table 2.

The 10 phytoconstituents of Triphala were classified by their chemical structures into four groups, including phytosterols, tannins, polyphenols, and flavonoids. Among 10 phytoconstituents of Triphala, beta-sitosterol from T. chebula (13) exhibited the highest binding free energy (ΔG <-7.50 kcal/mol) with two hydrogen bond interactions. The LE was lower than -0.25 (-0.26) and membership in the highest cluster was 42% (Table 2). From the structure of beta-sitosterol, a phenanthrene ring with a beta hydroxy group at C-3 of beta-sitosterol was found to be located in the HMG-binding pocket of HMG-CoA reductase and interacted with Arg590 and Ser684 amino acid residues. Meanwhile, the branched hydrocarbon side chain at C-17 of beta-sitosterol was pointed out from the HMG-binding pocket and bound with a hydrophobic pocket of HMG-CoA reductase (Figure 2A). The beta hydroxy group of beta-sitosterol was found to be located in the HMG-binding pocket at the same position as that of the hydroxy-acid part (HMG-like moiety) of atorvastatin, a synthetic type 2 HMG-CoA reductase inhibitor (22). Additionally, the hydrophobic pocket of HMG-CoA reductase was occupied by the branched hydrocarbon side chain at C-17 of beta-sitosterol which was similar to a large fluorophenyl group of atorvastatin (Figure 2C) (22).

Discussion

From the docking result, beta-sitosterol showed the highest affinity with HMG-CoA reductase. However, its orientation was fit in the hydrophobic pocket due to the flexible structure of the four fused sterol rings. The proper fit between beta-sitosterol and HMG-CoA reductase led to strong hydrophobic interactions. When compared with the conformation of simvastatin, the beta hydroxy group at C-3 of beta-sitosterol was crucial for binding with HMG-CoA reductase binding pocket. The branched hydrocarbon side chain at C-17 of beta-sitosterol also essentially interacted with the hydrophobic pocket of HMG-CoA reductase.

Beta-sitosterol, which is the main constituent of T. chebula, is an organic compound belonging to the family of phytosterols (12). The chemical structure and functions of plant sterols are similar to those of cholesterol in mammals. They are bioactive components found in vegetable oils, spreads, margarine, bread, cereals, and vegetables. Phytosterols are completely soluble in alcohols, but they are insoluble in water and have a relatively low solubility in oils. A wide range of biological activities of beta-sitosterol has been reported such as anxiolytic, sedative, analgesic, immunomodulation, antimicrobials, anticancer, anti-inflammation, hepatoprotection, protective effect on respiratory diseases, wound healing effect, antioxidant, antidiabetic activity, as well as lipid-lowering effect (23). It was documented that the preparation of beta-sitosterol self-microemulsions possessed a significant plasma lipid-lowering effect in hyperlipidemic mice (24). Administration of sitosterol pastils (2 g three times a day) with the main meals significantly reduced the levels of total cholesterol and LDL in children with heterozygous familial hypercholesterolemia (25). It was reported that the add-on treatment of beta-sitosterol (6 g/day) to lovastatin for 12 weeks significantly reduced the plasma LDL level by an additional of 12.8% to 15.1% in hypercholesterolemic patients (26). However, no significant changes in the other plasma lipid levels, such as HDL and lipoprotein (a) were observed. The plasma LDL concentration was decreased by 29.6 ± 1.3% in the hyperlipidemic patients who consumed a portfolio diet containing high plant sterols (1.0 g/1000 kcal) for 4 weeks (27). Beta-sitosterol supplementation at doses of 12-18 g/day significantly lowered both serum total cholesterol and LDL-C (as beta-lipoprotein lipid) in young men with ASCVD (28).

The cholesterol-lowering effect of beta-sitosterol primarily results from its inhibition against intestinal cholesterol absorption (29-31). The chemical structure of plant sterols including beta-sitosterol is similar to that of cholesterol. Thus, beta-sitosterol can inhibit dietary and endogenous cholesterol intestinal absorption by competitive solubilization in the micelle with cholesterol (32). Beta-sitosterol has been found to inhibit intestinal cholesterol absorption in normal volunteers (32). Beta-sitosterol is also considered to disturb the reabsorption of bile acids in the intestine (33). The study in hamsters demonstrated that beta-sitosterol laurate reduced the plasma cholesterol levels via various mechanisms of action including 1) an increase of cholesterol fecal excretion via downregulation of intestinal Niemann–Pick C1-like 1 (NPC1L1) protein and 2) a decrease of bile acid reabsorption which induces conversion of cholesterol into primary bile acids (34). Nonetheless, the other mechanisms of antidysslipidemic action of beta-sitosterol, especially HMG CoA reductase inhibition, have been less
Table 2. Docking studies of HMG-CoA reductase inhibitors and 10 phytoconstituents of Triphala with the catalytic portion of human HMG-CoA reductase

<table>
<thead>
<tr>
<th>Phytoconstituents of Triphala</th>
<th>Phytochemical groups</th>
<th>Herbal sources</th>
<th>Binding energy (ΔG) Kcal/mol</th>
<th>Ligand efficacy (LE)</th>
<th>Number of H-bond</th>
<th>% Conformation</th>
<th>Amino acid residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta-sitosterol</td>
<td>Sterols</td>
<td>Terminalia chebula</td>
<td>-7.75</td>
<td>-0.26</td>
<td>2</td>
<td>42</td>
<td>Arg590, Ser684</td>
</tr>
<tr>
<td>Chebulanin</td>
<td>Tannins</td>
<td>T. chebula, Phyllanthus emblica</td>
<td>-7.14</td>
<td>-0.16</td>
<td>13</td>
<td>38</td>
<td>Glu559, Gly560, Ser565, Arg590, Asn668, Ser661, Ser684, Lys691, Lys692, Asn755</td>
</tr>
<tr>
<td>Gallic acid</td>
<td>Polyphenols</td>
<td>P. emblica</td>
<td>-6.54</td>
<td>-0.55</td>
<td>5</td>
<td>48</td>
<td>Arg590, Ser684, Lys691, Lys735, Asn755</td>
</tr>
<tr>
<td>Ellagic acid</td>
<td>Polyphenols</td>
<td>T. chebula, T. bellirica, P. emblica</td>
<td>-6.23</td>
<td>-0.28</td>
<td>6</td>
<td>33</td>
<td>Ser684, Lys691, Lys735, Ala751, Asn755</td>
</tr>
<tr>
<td>Corilagin</td>
<td>Tannins</td>
<td>T. chebula</td>
<td>-6.19</td>
<td>-0.14</td>
<td>11</td>
<td>45</td>
<td>Gly560, Cys561, Arg590, Ser661, Asp690, Lys735, Asn755</td>
</tr>
<tr>
<td>Luteolin</td>
<td>Flavonoids</td>
<td>T. chebula</td>
<td>-6.18</td>
<td>-0.29</td>
<td>4</td>
<td>70</td>
<td>Gly560, Ser684, Lys692</td>
</tr>
<tr>
<td>Quercetin</td>
<td>Flavonoids</td>
<td>T. chebula, T. bellirica</td>
<td>-6.01</td>
<td>-0.27</td>
<td>4</td>
<td>52</td>
<td>Gly560, Ser684, Lys692</td>
</tr>
<tr>
<td>Chebulic acid</td>
<td>Polyphenols</td>
<td>T. chebula</td>
<td>-5.67</td>
<td>-0.23</td>
<td>6</td>
<td>35</td>
<td>Glu559, Arg590, Ser684, Lys735</td>
</tr>
<tr>
<td>Chebulinic acid</td>
<td>Tannins</td>
<td>T. chebula</td>
<td>-3.86</td>
<td>-0.06</td>
<td>13</td>
<td>4</td>
<td>Glu559, Gly560, Ser565, Ser661, Lys735, Ala751</td>
</tr>
<tr>
<td>Chebulagic acid</td>
<td>Tannins</td>
<td>T. chebula, T. bellirica</td>
<td>-1.14</td>
<td>-0.02</td>
<td>10</td>
<td>57</td>
<td>Glu559, Cys561, Ser565, Arg590, Lys691, Asn755</td>
</tr>
<tr>
<td>Atorvastatin</td>
<td>HMG-CoA reductase inhibitor</td>
<td>-</td>
<td>-12.09</td>
<td>-0.29</td>
<td>7</td>
<td>80</td>
<td>Glu559, Ser565, Ser684, Lys691, Lys735, Ala751, Asn755</td>
</tr>
</tbody>
</table>
The binding mode of beta-sitosterol and atorvastatin in the binding site of the HMG-CoA reductase template showing (A) two hydrogen bonds of beta-sitosterol in green dashed lines (B) interacted with amino acid residues (C) seven hydrogen bonds of atorvastatin in green dashed lines (D) overlay of beta-sitosterol (green) and atorvastatin (yellow) in the active binding site of HMG-CoA reductase. The figures were generated using PyMOL software.

Figure 2. The binding mode of beta-sitosterol and atorvastatin in the binding site of the HMG-CoA reductase template showing (A) two hydrogen bonds of beta-sitosterol in green dashed lines (B) interacted with amino acid residues (C) seven hydrogen bonds of atorvastatin in green dashed lines (D) overlay of beta-sitosterol (green) and atorvastatin (yellow) in the active binding site of HMG-CoA reductase. The figures were generated using PyMOL software.

It was demonstrated that beta-sitosterol derived from *Schizonepeta tenuifolia* significantly reduced intracellular levels of triglycerides and cholesterol in L6 cells via AMPK activation (35). The activation of AMPK is known to cause HMG CoA reductase phosphorylation and inactivation (36). It has been reported that beta-sitosterol derived from *Cassia mimosoides* Linn. at the concentration of 125 µg/mL significantly inhibited HMG-CoA reductase activity (37). To the best of our knowledge, this *in silico* study is the first report of HMG-CoA reductase binding mode and configuration of beta-sitosterol. Beta-sitosterol possibly exerts the lipid-lowering effect via multiple modes of action. Beta-sitosterol is thus likely to play a major role in the hypocholesterolemic effect of Triphala formulation.

The pharmacokinetics of beta-sitosterol in healthy volunteers were documented in the study of Duchateau et al (38). The oral bioavailability of beta-sitosterol was relatively very low at 0.41%. Consequently, the development of beta-sitosterol preparation with higher bioavailability is essential for its HMG CoA reductase inhibitory activity to arise. Beta-sitosterol was found to be distributed in various tissues, including adrenal glands, ovaries, brain, testes, and skin, with a volume of distribution (Vd) of 46 L. The metabolism of beta-sitosterol, which resulted in various metabolites, was reported to occur in the liver as well as in other tissues. Beta-sitosterol is mainly excreted in feces (80%) (33). It was shown that beta-sitosterol had rather low inhibitory activity against CYP3A4 and CYP2D6 enzymes with an IC₅₀ of approximately 200 g/mL (39). Therefore, the hazardous interactions between beta-sitosterol and CYP3A4-substrate statins, especially simvastatin, are unlikely. This suggests that beta-sitosterol

...
crucial amino residues in the active binding site of HMG-CoA reductase at the same position as that of atorvastatin.

HMG-CoA reductase inhibition of gallic acid and ellagic acid was also reported earlier. The flavonoids, lutein, and quercetin, were bound to the active binding site of HMG-CoA reductase with a high % conformation of 50 - 70%. These phytoconstituents of Triphala are the active component in the Triphala Ayurvedic formulation. This in silico study suggested the potential HMG-CoA reductase inhibition of the active phytochemicals derived from Triphala formulation. However, further in vitro and in vivo experiments regarding the lipid-lowering effects of these phytochemicals should be investigated.

Conclusion
From the current HMG-CoA reductase docking study, several phytochemicals derived from Triphala substantially exhibited the HMG-CoA reductase binding capability. Beta-sitosterol provided the highest binding affinity toward HMG-CoA reductase with a binding energy of -7.75 kcal/mol. These results indicate that the phytoconstituents in Triphala potentially exert their antidyldyslipidemic effect via HMG-CoA reductase inhibition.

Authors’ contribution
All authors designed the study, carried out the study, wrote the manuscript, and revised the manuscript. All authors read and approved the final version of the manuscript.

Conflict of interests
The authors declare no conflict of interest.

Ethical considerations
The authors considered all ethical issues, including duplications, and the manuscript has been checked for plagiarism.

Funding/Support
This research was financially supported by the Faculty of Pharmacy, Mahasarakham University, Thailand. (Grant number: 1/2559).

References

Rinthong et al

